Uncertainty estimation based adversarial attack in multi-class classification
نویسندگان
چکیده
Abstract Model uncertainty has gained popularity in machine learning due to the overconfident predictions derived from standard neural networks which are not trustworthy. Recently, Monte-Carlo based adversarial attack (MC-AA) been proposed as a simple estimation method is powerful capturing data points that lie overlapping distribution of decision boundary. MC-AA produces uncertainties by performing back-and-forth perturbations given point towards boundary using idea attacks. Despite its efficacy against other methods, this only examined on binary classification problems. Thus, we present and examine with multi-class tasks. We out limitation multiple classes tackle converting multiclass problem into ‘one-versus-all’ classification. compare recent model methods Cora – graph structured dataset MNIST an image dataset. conducted experiments performed variety deep algorithms perform Consequently, discuss best results LEConv AUC-score 0.889 CNN 0.98 methods.
منابع مشابه
Feature-based Malicious URL and Attack Type Detection Using Multi-class Classification
Nowadays, malicious URLs are the common threat to the businesses, social networks, net-banking etc. Existing approaches have focused on binary detection i.e. either the URL is malicious or benign. Very few literature is found which focused on the detection of malicious URLs and their attack types. Hence, it becomes necessary to know the attack type and adopt an effective countermeasure. This pa...
متن کاملLearning Sparse Adversarial Dictionaries For Multi-Class Audio Classification
Audio events are quite often overlapping in nature, and more prone to noise than visual signals. There has been increasing evidence for the superior performance of representations learned using sparse dictionaries for applications like audio denoising and speech enhancement. This paper concentrates on modifying the traditional reconstructive dictionary learning algorithms, by incorporating a di...
متن کاملProbability Estimation for Multi-class Classification Based on Label Ranking
We consider the problem of probability estimation in the setting of multi-class classification. While this problem has already been addressed in the literature, we tackle it from a novel perspective. Exploiting the close connection between probability estimation and ranking, our idea is to solve the former on the basis of the latter, taking advantage of recently developed methods for label rank...
متن کاملExploiting Associations between Class Labels in Multi-label Classification
Multi-label classification has many applications in the text categorization, biology and medical diagnosis, in which multiple class labels can be assigned to each training instance simultaneously. As it is often the case that there are relationships between the labels, extracting the existing relationships between the labels and taking advantage of them during the training or prediction phases ...
متن کاملAdversarial Uncertainty in Multi-Robot Patrol
We study the problem of multi-robot perimeter patrol in adversarial environments, under uncertainty of adversarial behavior. The robots patrol around a closed area using a nondeterministic patrol algorithm. The adversary’s choice of penetration point depends on the knowledge it obtained on the patrolling algorithm and its weakness points. Previous work investigated full knowledge and zero knowl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Multimedia Tools and Applications
سال: 2022
ISSN: ['1380-7501', '1573-7721']
DOI: https://doi.org/10.1007/s11042-022-13269-1